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New View on an Anisotropic Medium and kii

Application to Transformation from
Anisotropic to Isotropic Problems

MASANORI KOBAYASHI, MEMBER, IEEE, AND RYUITI TERAKADO

Abstract-The metric factor is defined as

m(.#, $*, fl.J = cos2i9Je~ + sin28X/~”

in the radial diio~ with the angle OX from the x axis behrg one of the

prfsrcipaf axe9 in an mdsotropic dielectric medium filliig the two-dimen-

sional space. ‘fhe normalized metric factor is defined as

n(c;,~*,Ox,#)-m( c$,~*,6x)/rn(~!$%*j9)

in the form norrnahed by the metric factor in the dinAon with the angle

~ from the x axis. Tire effective path length d&2 between the points F’l

and P2 is defined as

d&2 = n(#>%*>W)d P,P2

where dP,P2 is the actmd path length of the straight fhIe PIPz Wifi W

angle OX from the x axis. We propose tire minfmrrm principle of the

effectfve path length for electric flax in the region with mrrftilayered

anisotTopic media. It is applied to solving the electrostatic problem with

two anisotropic media whose principaf axes are different. We show by

using the normalii metric factor tfmt tbe aniaotropic problem can be

transformed into the isotropic problem.

I. INTRODUCTION

T HE boundary value problem for microstrip on an-

isotropic substrates has received considerable atten-

tion [1]–[4], [6]–[8], [ 16]–[19].1 The calculation of the

parameters of the microstrip transmission line or the elec-

trooptic light modulator line was treated in [1], [4]–[8].

One of the authors extended the method by Silvester [9]

for deriving the Green’s function for the microstrip line

with an anisotropic substrate [1] and proposed, by using

this Green’s function, a method which calculates with a

high accuracy the line capacitance of the microstrip line

for anisotropic substrates. This method also calculates

accurately the effective filling fraction [10], [11] for the

isotropic substrate. The Green’s function technique which

is useful in solving such a problem was treated in [2]. The
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authors obtained the exact resistance of two-dimensional

anisotropic compound region with antisymmetry [3].

Yamashita et al. [6] and Szentkuti [18], [19] treated the

method transforming the anisotropic problem into the

isotropic problem by using the affine transformation. One

of the authors proposed mapping between two-dimen-

sional anisotropic regions with different permittivi,ty

tensors and showed two examples which were able to be

transformed the single anisotropic into isotropic regions

[12].

In this paper, the metric factor and the normalized

metric factor of an anisotropic medium are defined to

show what properties the electric flux considered holds.

The minimum principle of effective path length for such

electric flux is expressed in the form of integration by

using the normalized metric factor. Applying this princi-

ple, the electrostatic problem with two anisotropic meclia,

whose principal axes are different from each other, is

solved. Also, we show that the electrostatic problem with

multilayered anisotropic media can be transformed into

that with multilayered isotropic media by using the nm-

malized metric factor. It is valuable from the viewpoint of

the boundary value problem to solve the anisotropic prclb-

lem as it is. Also, it is useful to obtain the method being

able to transform the anisotropic problem into the iso-

tropic problem because we can use the many available

methods for the analysis of the isotropic problem. We

represent from the fact of this transformation that the liine

capacitance per unit length for the microstrip line with

anisotropic dielectric substrate is equal to that for the

microstrip line with a corresponding isotropic dielectric

substrate. Therefore, we can easily calculate the former

line capacitance by using the accurately approximate for-

mula of effective filling fraction for the case of isotropic

dielectric substrate. This result will be shown in the other

paper [15].

II. METRIC FACTOR AND NORMALIZED METRIC

FACTOR

Now, consider the anisotropic medium of the following

permittivity tensor filling the two-dimensional space:

where # and $* are the relative dielectric constants ancl 60

is the permittivity of vacuum. In such a medium, the
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electric potential + at an arbitrary point (x,y) for the line

charge q. at the source point (xO,yO) is the solution of the

two-dimensional inhomogeneous partial differential equa-

tion:

●☛a2+ a+5
—+~*—

-_ floNx – Xo)w’ –Ye)

‘ aX2 ayz= Co
(2)

Applying the coordinate transformation (u= x/~ ,

v =.Y/fi ) and the property of the delta function (Nax)
= 8(x)/l al) to (2), we get

a2++ az+ fzo—— . —— 8(U – Uo)c$(o– O.).
auz avz=

(3)

v=to ~x %

Therefore, we can obtain the solution of (2) by applying

the coordinate transformation inversely to the solution of

(3), that is,

where c is an arbitrary constant.

We see from (4) that the line charge emits electric flux

in the radial direction an(d the electric flux ~ per unit

angle in the radial direction with the angle OXfrom the x

axis, which is one of principal axes, is expressed as

follows:

Now, we define the metric factor m in the radial direction

with the angle 8X from the x axis in such an anisotropic

medium as follows:

Therefore, we can say that this metric factor is the factor

to show the degree of a.nisotropy of the anisotropic

medium.

Also, we define the normalized metric factor n as the

metric factor normalized by the metric factor in the direc-

tion with the angle ~ from the x axis, that is,

~(~:,%*,@x78)=~ (f:;> %*,@x)/~(~:29,P)- (7)

We define the effective ,path length d~,p, between the

point Pl(xl,yl) and the point P2(x2,yJ as follows:

d’PIP* = n(#,~*,6j,fl)dp,p, (8)

where

dP,P2 = ~( xl – %)2 + (Y I –Y2)2 (= actual path length)

(9)

and 6X is the angle between the direction of the line P1P2

and the x axis. Using this effective path length, we can

express the contribution @ to the electric potential at the

point P2(X2,Y2) due to only the line charge q. at the point

Pl(xl,yl) as follows:

~= qJn(l/d&2)/(2n~o= ). (10)

The ~ in (7) is defined as the angle between the interface

of different media and the x axis being one of principal

axes of each medium. On the other hand, the j3 for the

case of single medium is arbitrary because there is no

interface and the two-dimensional electric potential @ in

such a medium has an arbitrary constant c (see (4)), not

determined unless the value of @ at the proper point is

given. Therefore, we can say from (6)–(10) that to define

the normalized metric factor n as (7)-means to let the

electric potential + at P2 due to the line charge qO at P, be

zero for the case of single medium, where the direction of

straight line F’l P2 is parallel to the imaginary interface

with the proper (3 from the x axis and dp,p, = 1.

The typical final-electric flux line, the final solution

associated with the line charge q. in the region with the

two anisotropic media, is shown in Fig. l(a). We consider

here the case which the permittivity tensors of two aniso-

tropic media are expressed in the form of (1), respectively.

We can resolve this final-electric flux into the refracted

and reflected flux [1]. For example, the final-electric flux

at the field point D can be obtained by using the electric

flux emitted from the source lime charge q. at the source

point Qo(xo,yo), and the reflected flux which is the electric

flux emitted from the image line charge Kqo(K= (=

‘$%)/(~.- +{E~)) at the image’ po;t
Q2( – XO,YO) in Fig. l(b). Also, the final-electric flux at the
field point C is identical to the refracted flux which is the

elect~c flux emitted from the image line charge (1 – K)qo

VTat the image point Q1(CIXO,YJ(CI = %y/~2. / ~ly/~l. )

in Fig. l(b).

In this paper, we do not pay attention to the final-elec-

tric flux in Fig. l(a), but the electric flux, the refracted

and reflected flux such as shown in Fig. l(b), into which

the final-electric flux is resolved. This electric flux paid

attention is one emitted from a line charge in the fullspace

filled with a single anisotropic dielectric medium and goes

from a line charge in the radial direction.

Now, we consider the case of anisotropic media in Fig.

l(b). We can obtain that the effective path lengths of the

paths, QOB, Q#?, and Q2B, have the following relations:

Therefore, the effective path lengths d~oQtiaB and d&ti.B

are expressed as follows:
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(a) 0) (c)

Fig. 1. Typical electric flux lines in the region with two anisotropic media (the actual path length
region G) and in the region with two isotropic media (the effective path length region G’). (a) Typicat
final-electric flux line in G. (b) Typical electric flux lines in G. (c) Typicat electric flux lines in G’.

Y,=Ycaxo/(w,-xc), .== /~ , C;= C:C., C;=,;,,, C;== , c?== ,

K=(c;-c?)/(cj’+ c;), x6=xo@7z , x;= -x&, Y&=Y.,_Y;=y,.

d&vi~~ – * (3 /2)d~c—n(@X, c&&7/2)dQ~ + n(~&>~lY> 1>~

. n(cfX, cfY, @l>~/2)dQ, c. (16)

We easily find from Fig. l(b) that the path QOBA is one

with the shortest path length, but the path QOBC is not so.
However, we can find from (15) and (16) that the paths

QJL4 and QOBC are the paths with the shortest effective

path lengths,

If the two media are isotropic in Fig. l(b), cl= e; = q’(i

=1, 2), the image point QI becomes the position of the

source point QO. Then, we can easily find that the paths

Q013C and QOlL4 are the paths with shortest path length

among the paths of the electric flux traveling via the

point on the interface from QO to C and from QO to A,

respectively. Also, we can find by letting ei~= e; = ci* in

(15) and (16) and using n(c”,e”, L9X,~)~ 1 for the isotropic

medium that the paths, QOlL4 and QOBC, are the paths

with the shortest effective path lengths.

From these results, we can say that the electric flux

emitted from the source point travels as such that its

effective path length becomes shortest. Therefore, we pro-

pose the minimum principle of effective path length for

electric flux of an electrostatic problem with anisotropic

media which will be able to be solved by using the

image-coefficient method [1] as follows:

J( ~ #,5*,6 x,~)ds =minimum. (17)
path

This principle states that the electric flux emitted from the

source line charge chooses a trajectory that minimizes the

effective path length. We must take note that this princi-

ple is valid for the refracted and reflected flux into which

the final-electric flux associated with a single line charge

at an arbitrary point in the region with anisotropic media

is resolved, but not valid for the final-electric flux. Also,

this principle can be applied to the case with an arbitrary

number of the media (even whose principal axes are

different) if those interfaces are parallel, and to the finite

region bounded by Dirichlei, Neumann, or those mixed

boundaries whose boundaries are piecewise smooth. ‘We

can obtain a trajectory of an electric flux emitted from the

source point in Fig. 1(b) by solving the Euler equation for

the principle (17). Therefore, we can obtain the positims

of the image points Q1 and Q2 by using (11). Then, we can

find that these image points are fixed if the source point is

given.

In order to show the validity of this minimum principle,

let us solve the problem which has not been solved’ in the

literature, with the interface at y = blx, with two aniso-

tropic media whose principal axes are different from each

other, and with the line charge ql at the source point

Pl(xl,yl) in the medium ~1, as shown in Fig. 2. 11. is

difficult to solve this problem by using only the image-

coefficient method in [1]. We express below the permiltiv-

ity tensor ~1 of one anisotropic medium in the x-y coordi-

nates:

and the permittivity tensor ~z of other anisotropic medium

in the &q coordinates:

(19)

The &q coordinates is obtained by rotating the x-y cc}or-

dinates with the angle y as shown in Fig. 2, that is,

This problem is the fundamental one to derive the Green’s

function for the microstrip line with the anisotropic sub-

strate whose principal axes are not parallel and perpendicu-

lar to the ground conductor. Solving the Euler equati~on

for the principle (17), we can know the trajectory of an

electric flux emitted from the source line charge ql. lLet

the points PJx2,yJ and PJx3,yJ be the image point of

the refracted flux PiP5 and that of the reflected flux Pi P4,

for the electric flux PI Pi emitted from the source line

charge ql at Pl(xl,yl), respectively. The points P2 and. P3
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Let the magnitudes of the image charges at Pz and P3,

here, be denoted by qz and q~, respectively. We can

express the electric potential @at the arbitrary point (x,y)

from (10) as follows:

[““lnll=T/a
+ q~in

1m@(’-’3)2+(y3) 3)’ ‘

(x,y) G ~, region (31)

Fig. 2. Refraction and reflection of the electric flux emitted from the
source line charge ql in the region with two anisotropic media (the
actual path length region G).

. in

@z@ H2)2+(v,2)2 ‘

can be determined, respectively, from the following condi-

tions for the effective path lengths:

where

4R = ~l(dx>E& %J)4P, (23)

d;,pi = * o D– y)dp,~i~2(q4>%qy ~, (24)

~=tan-’bl. (25)

So that

I
YI a;— b;

()

Y1x3.—+—
b,

~,_—
a;+ b; bl

2b1a;

()

(26)
Y1

Y3=Yl+~ xl——
al+b; b,

L

[H

X2 Cosy 1[1– sin y $2=
Y2

(27)
sin y Cosy qz

$2= a1{a1a2(b1 siny+cosy) +b1(b1cosy–siny)}

a2(a; +b:)

() Y1
b +(blsiny+ cosy)yl/blo x,—— (28)

1

al{al(bl cosy–siny) –a2bl(bl siny+cosy)}
.q2=

a;+ b;

() Y1
b +(blcosy –siny)yl/blo xl—— (29)

1

where

%==9 %= VZZZ. (30)

where

b2=(blcosy –siny)/(bl siny+cosy). (33)

Let us determine q2 and q3 as follows:

q’=(1–~)!ll (34)

——

where the fraction K is called the image coefficient. The

validity of this determination is obtained by investigating

the requirements of continuity of the normal final-electric

flux density component and the tangential final-electric

field component at the interface y = blx. Therefore, at the

* 8 ) of the fluxinterface, the f ractlon K@(ql, 6?X,●IY, s~

t(ql, c?x,cfi, OJ emitted from the source point PI reflects
and goes as emitted from the image point P3, and the

* 0 ) refracts and goes asremainder (1 —K)+(ql, c~, Ezn, ~
emitted from the image point P2.

III. TRANSFORMATION FROM ANISOTROPIC

PROBLEM TO ISOTROPIC PROBLEM

We see from (10) that the equipotential line is the curve

connecting the points whose effective path length from the

source point are equal to each other. This means that the

boundary value problem with anisotropic medium can be

transformed into that with isotropic medium. Let us call

the former region with the actual path-length region G

and the latter region with the effective path-length region

G’.

For example, we can transform the anisotropic problem
shown in Fi Q. 1(%) into the isntrnnic nrohlem shown in
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Fig, l(c) as follows:

[1[

x’ * o, r/2)n(#,qY, o
1[1

x
=

Y’ o n(&9~iy7* T/2,71/2) y

(37)

where i= 1 for the field point (x,y) = El region and the

image point QI(xl,y J, and i= 2 for the field point (x,y) E

~2 region, the source point Qo(xo,yo), and the image point

QJxZ,Y2), respectively.
Also, we can transform the anisotropic problem shown

in Fig. 2 into the isotropic problem shown in Fig. 3 as

follows:

for the field point (x,y) G ZI region, the source

Pl(xl,yl), and the image point P3(X3,YJ, and

/[ 1‘: =R(a) R(-y)Iv(&vjP - YM(Y)[ ; ]
Y

for the field point (x,y) G ~2 region and the image

~Axz,YJ, where

[

n(~s,~*,f38)
N(x,y, e)=

o
0

n(e:, ~*,7r/2,8)
I

(38)

point

(39)

point

(40)

(41)

tanb= (a2siny+b2cosy) a1–(a2cosy– b,siny)b,

(azcosy - b2siny)a1+(a2siny +b,cosy)b, “

(42)

In (38), iV(x,y,~) denotes the transformation matrix of

the x-y coordinates into the x’–y’ coordinates in order to

transform the actual path-length region into the effective

path - length region. In (39), R(y) denotes the transforma-

tion matrix of the x–y coordinates into the $–q coordi-

nates. Next, N(.$, q, @– y) denotes the transformation

matrix of the .&q coordinates into the $’-q’ coordinates in

order to transform the actual path-length region into the

effective path-length region. Also, R(8 )R( – y) denotes the

transformation matrix of the ~–q’ coordinates into the

x’–y’ coordinates in order to match the interface of two

media in the x’– y’ axes considered as the coordinate axes
in the effective path-length region.

Next, we consider the actual path-length region G,

shown in Fig. 4(a), with anisotropic media whose inter-

faces are parallel to the x axis, whose permittivity tensors

are

[1c:(i) o<.=
o co, i=l,2,3,. ... n (43)

~*(i)

/

., ’., .. ;.,”
... . . .

.,:,
;:’. E;

Fig. 3. Refraction and reflection of the electric flu emitted from lthe
source line charge q, in the effective path-length region G‘ trans-
formed from the actual path-length region G in Fig. 2. c;= c?~

C;-= C%. ?==, C;=*.

and whose principal axes are such that

(44)

We can transform the region G shown in Fig. 4(a) into the

effective path-length region G‘ shown in Fig. 4(b) as

follows, by applying the transformation modified (38) and

(39):

[~l=wl ‘x’y)=’’region“’)

[~l=T(2)[3‘x’y)=:2regi0n“6)

[4=T(i)[TT(i)[
(x,y) G ~ region, ‘ i =3,4,5,... ,n ($7)

where

T(i) = R(i$i)R( – yi)N(xciJ,y(i), – yi)R(yi) (49)

(50)

tan~i = (ai sinyi + bi cosyi)/(ai Cosyi – bi sinyi) ($1)
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t, I
1

Fig. 4. Transformation from the actual path-length region G into the
effective path-length region G’. (a) Actual path-length region G. (b)
Effective path-length region G’.

b,= tan( – yi) (52)

Calculating the matrix T(i) in (49) by using (50)–(53), we

can express T(i) with only ai and yi, i = 1,2,3, - “ “, n, as

follows:

T(i) =

[

T1l(i) Tlz(i)

T21(i) T22(i) 1 (54)

where

Tll(i)= 1, T12(i)=
(a:- l)sin~icos~i

(a:- l)cos’yi+ 1

T21(i) =0, T22(i)= ai/{(a,z– l)cos2yi+ 1}.

In the case of yi = O(i = 1,2,3, ””., n), this transformation

is identical to that shown by Yamashita et al. [6] and

Szentkuti [18]. We know that both the latter transforma-
tions are useful for an actual structure as one of the

anisotropic substrates’ principal axes is parallel to the

direction of interface between those substrates in many

cases. Szentkuti [19] derived the transformation for the

case of n =2, a2 = 1, yl = O. His results are identical to our

results (see References).

Now we consider the matter obtained from the trans-

formations shown already. We can say that the normal-

ized metric factor is the transforming factor of the path

length of the electric flux traveling between two points

for being able to treat the anisotropic medium as the

isotropic medium. The points on the interface of two

media in G, by the transformation (45)–(48), do not slip

out of place from each other in G‘ as the normalized

metric factors in two media are unit in the direction

parallel to the interface. This means that it is reasonable

to define the normalized metric factor as (7). Also, we can

find that the effective path lengths and the electric poten-

tials of two corresponding points between G (Fig. l(b))

and G‘ (Fig. l(c)) or G (Fig. 2) and G‘ (Fig. 3) are

mathematically equal to each other, respectively. The elec-

tric potential for the case with many line charges can be

calculated by the superposition principle. Therefore, we

easily see that the line capacitance between the conduc-

tors for the region G with anisotropic dielectric media in

Fig. 5(a) is equal to that for the region G’ in Fig. 5(b) with

isotropic dielectric media, which is obtained by using

(45)-(48) and (54). Because the total charges on the con-

ductors and the electric potentials of the conductors of

two regions are equal to each other for this transforma-

tion, respectively. Let the line element of the direction
with the angle 19Xf,)from the x(i) axis in the =i region in G

be dsi, and the total line charge and the charge distribu-

tion on it be qi and Ui, respectively. Let those in G’ be ds(,

q;) and o;, respectively. We obtain the following relation:

0;= *./jOi/~(t~(i)j~ (1)> J% — ?’,) (55)

from q’ds~(= q;)= *$ui~i( = qi) and d.y’ = n(c$h> ~(i), ~oo,

– yi)di. Therefore, we see that the charge distributions on

the conductor surfaces parallel to the interfaces in G and

G’ are identical to each other. We can express o(i), E(i),

and D(i) in the ~ region in G and E’(i) and D ‘(i) in the +

region in G‘ by using @’(i) in the c; region in G‘ as

follows :

+(i) =+’(i) (56)

E(i) = W;,(i)+ j{ T1,(i)E.j(i) + T2’(i)E~,(i)} (57)

D(i) = {R( – yi).<-R(yi)}”~(i) (58)

‘( af~~))+j ( a$~))E’(i) = iE~.(i) + jE~,(i) = z –

(59)

D’(i) = ~l?’(i) (60)

where R(13) is the tensor expression of R(8).

Next, we consider the unsymmetric strip transmission

line in G (Fig. 6(a)). The permittivity tensor of its aniso-

tropic dielectric substrate of thickness 2h is such that

(61)

in the (–q coordinates obtained by rotating the x–y

coordinates with the angle y. Its strip width is w, its strip

thickness is t, and the slip of the midpoints of two strips is

such that

d=2h(a2– l)sinycosy/{(a2– l)cos2y+ 1} (62)

-4where a – \*/ c! . Using (45)–(48) and (54), we can

transform the unsymmetric strip transmission line in G

into the symmetric strip transmission line, with
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=4----- Y’

t

I

(a) (b)

Fig. 5. Example of tbe transformation from G to G’. (a) Actual path-
Iength region G. (b) Effective path-length region G‘. al= ad = 1, az = 2,

*

(a) 0)

Fig. 6. Transformation from the unsymmetric strip transmission line in
G into the symmetric strip transmission line in G‘. (a) Unsymmetnc
strip transmission line in G. (b) Symmetric strip transmission line in
G’. n=3, al=a~=l, a2=2, hl=lq=w, h2=21r, yl=y3=0, y2=y=
T/6, X{2)-Y( J coordinates +.$-q coordinates in Fig. 4(a).

W’=w (64)

h’=ah/{(a2– I)coszy+ 1} (65)

t’=t (66)

in G‘ (Fig. 6(b)). From Fig. 6, we find that the dot-dash

line AC as well as the dot-dash line A’C’ are both zero

potential lines. Therefore, the microstrip lines with the

same anisotropic dielectric substrate higher and lower

than the ground conductor are the image lines to the

ground conductor, which let the dot-dash line AC be.

Also, the line capacitance C/CO of each microstrip line in

G is equal to that of the corresponding microstrip line in

G’. The parameters of a microstrip line with anisotropic
substrate can be calculated by using C/cO of the case with

substrate and CO/ COof the case without substrate. The

exact value of CO/cO can be obtained by conformal map-

ping [13], [14]. The C/cO for the microstrip line with

anisotropic substrate can be obtained easily from the

approximate formula of the effective filling fraction qw [1],

[10], [11] for the case of isotropic substrate. Therefore, it is

worthy to show the approximate formula of qWwith a high

accuracy. This will be shown in the other paper [15].
We must mention that the transformation (45)–(48) and

(54) is valid for the finite region composed of the multi-

layered anisotropic media and bounded by the conductor,
Neumann, or those mixed boundaries whose boundaries

are piecewise smooth, though its example is not shown

particularly in this paper.

IV. CONCLUSION

We have defined the metric factor and

metric factor for an anisotropic medium.

realized metric factor, we have shown the

the normalized

Using the nor-

minimum prin-

ciple of effective path length which shows us a trajectory
for an electric flux to travel. In order to show the validity

of this principle, we have solved the electrostatic problem

with two anisotropic media. Also, it has been shown that

the anisotropic problem can be transformed into the iso-

tropic problem by using the normalized metric factor.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

10]

11]

12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

l?EFEHENCES

M. Kobayashi, “Analysis of the microstrip and electrooptic IIight
modulator; IEEE Trams. Microwave Theoiy Tech., vol. Iv ITT-26,

pp. 119-126, Feb. 1978.
, “Green’s function technique for solving artisotropic electros-

tatic field problems; IEEE Trans. Microwave Theory Tech., vol.
M’M’-26, pp. 5 10–5 12, July 1978.
R. Terakado and M. Kobayashi, “The resistance vrdue of two-
dimensional anisotropic compound regions with antisyrnrnetry:
Trans. Inst. Elec. Eng, Japan, vol. 97-A, pp. 377-381, July 1977, @r
Japanese).
R. P. Owens, J. E. Aitken, and T. C. Edwards, “Quasi-slatic
characteristics of nticrostrip on an anisotropic sapphire substrate,”
IEEE Tran.r. Microwave Theoty Tech., vol. MTT-24, pp. 499–505,
Aug. 1976.
E. Yamashita and K. Atsuki, “Distributed capacitance of a thin-
film electrooptic light modulator: IEEE Trans. Microwave i%eov
Tech., vol. MTT-23, pp. 177-178, Jan. 1975.
E. Yamashita, K. Atsuki, and T. Men, “Application of MIC
formulas to a class of integrated-optics modulator analysis: A
simple transfonnation~ IEEE Trans. Microwaue Theory Tech., vol.
MTT-25, pp. 146-150, Feb. 1977.
N. G. Alexopotdos, S. Kemer, and C. M. Krowne, “Dispersionless
coupled rnicrostrip over fused silica-like anisotropic substrates,”
Electron. Lett., vol. 12, pp. 579–580, Dec. 1976.
N. G. Alexopoulos and C. M. Krowne, “On the charactenstiw of
single and coupled nticrostrip on anisotropic substrates,” ZXEE
Trans. Ikficrowaoe Theory Tech., vol. MTT-26, pp. 387–393, Jrme
1978.
P. Silvester, “TEM wave properties of microstrip transmiwion
lines,” Proc. Inst. Elec. Eng. (London), vol. 115, pp. 43–48, Jan.
1968.
H. A. Wheeler, “Transmission-line properties of parallel strips and
separated by a dielectric sheet,” IEEE Tran.r. A4icrowaue Tkoiy
Tech., vol. M’lT-13, pp. 172-185, May 1965.

“Transmission-line properties of a strip on a dielectric slheet
on a’plane; IEEE Trans. Microwave Theoiy Tech., vol. M’IT-25,
pp. 631-647, Aug. 1977.
S. Kusase and R. Terakado, “Mapping theory of two-dimensional
anisotropic regions; Proc. IEEE, vol. 67, pp. 171– 172, Jan. 1979.
H. B. Palmer, “The capacitance of a parallel-plate capacitor by the
Schwartz-Christo ffel transformation; Trans. Amer. Inst. E!ect.
Eng., vol. 56, pp. 363–366, 1937.
K. G. Black and T. J. Higgins, “Rigorous determination of the
parameters of microstrip transmission lines: IRE Trans. Mlcra-
waue Theoty Tech., vol. WIT-3, pp. 93– 113, 1965.
M. Kobayashi and R. Terakado, “Accurately approximate formula
of effective filling fraction for microstrip line with isotropic wrb-
strate and its application to the case of anisotropic substrate,” this
issue, pp. 776–778.

Y. Hayashi and T. Kitazawz, “Analysis of nticrostrip transmis-
sion line on a sapphire substrate,” Tram. Inst. Electron. Comm.
Eng., Japan, vol. 62-B, pp. 596–602, June 1979, (in Japanese).

M. Olyphant, Jr., “Measuring anisotropy in microwave sub-
strates: in 1979 IEEE Int. kficrowaoe Synrp. Dig., pp. 91–93.

B. T. Szerttkuti, “Simple analysis of anisotropic rnicrostrip lines
by a transform method~ Electron. Lett., vol. 12, pp. 672–673, Dec.
1976.
—, “The isotropy transformation and its application to strip-like
transmission lines usiug anisotropic dielectrics: ETHZ Rep. ‘Iwo.
77-09 (Eidegenossische Technische Hochschule, Zurich), Sept.
1977.


