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New View on an Anisotropic Medium and Its
Application to Transformation from
Anisotropic to Isotropic Problems

MASANORI KOBAYASHI, MEMBER, IEEE, AND RYUITI TERAKADO

Abstract—The metric factor is defined as

m(et,e*,0,) = \/0052 0./ €t +sind, /e

in the radial direction, with the angle §, from the x axis being one of the
principal axes in an anisotropic dielectric medium filling the two-dimen-
sional space. The normalized metric factor is defined as

n(c;',gf,&,ﬁ) Em(‘;’ 9’»9;:)/"'(‘:,9*»3)

in the form normalized by the metric factor in the direction with the angle
B from the x axis. The effective path length dy, », between the points P,
and P, is defined as

dI,’.Pz = ”(ex"ef’ 0an)dPle

where dp p, is the actual path length of the straight line PP, with the
angle §, from the x axis. We propose the minimum principle of the
effective path length for electric flux in the region with multilayered
anisotropic media. It is applied to solving the electrostatic problem with
two anisotropic media whose principal axes are different. We show by
using the normalized metric factor that the anisotropic problem can be
transformed into the isotropic problem.

I. INTRODUCTION

HE boundary value problem for microstrip on an-

isotropic substrates has received considerable atten-
tion [1]-[4], [6]-[8], [16]-[19].' The calculation of the
parameters of the microstrip transmission line or the elec-
trooptic light modulator line was treated in [1], [4]-[8].
One of the authors extended the method by Silvester [9]
for deriving the Green’s function for the microstrip line
with an anisotropic substrate [1] and proposed, by using
this Green’s function, a method which calculates with a
high accuracy the line capacitance of the microstrip line
for anisotropic substrates. This method also calculates
accurately the effective filling fraction [10], [11] for the
isotropic substrate. The Green’s function technique which
is useful in solving such a problem was treated in [2]. The
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am e/ 1)~ (3,/86,) = Y/ 5,0~ (3,/62) -

authors obtained the exact resistance of two-dimensional
anisotropic compound region with antisymmetry [3].
Yamashita et al. [6] and Szentkuti [18], [19] treated the
method transforming the anisotropic problem into the
isotropic problem by using the affine iransformation. One
of the authors proposed mapping between two-dimen-
sional anisotropic regions with different permittivity
tensors and showed two examples which were able to be
transformed the single anisotropic into isotropic regions
[12].

In this paper, the metric factor and the normalized
metric factor of an anisotropic medium are defined to
show what properties the electric flux considered holds.
The minimum principle of effective path length for such
electric flux is expressed in the form of integration by
using the normalized metric factor. Applying this princi-
ple, the electrostatic problem with two anisotropic media,
whose principal axes are different from each other, is
solved. Also, we show that the electrostatic problem with
multilayered anisotropic media can be transformed into
that with multilayered isotropic media by using the nor-
malized metric factor. It is valuable from the viewpoint of
the boundary value problem to solve the anisotropic prob-
lem as it is. Also, it is useful to obtain the method being
able to transform the anisotropic problem into the iso-
tropic problem because we can use the many available
methods for the analysis of the isotropic problem. We
represent from the fact of this transformation that the line
capacitance per unit length for the microstrip line with
anisotropic dielectric substrate is equal to that for the
microstrip line with a corresponding isotropic dielectric
substrate. Therefore, we can easily calculate the former
line capacitance by using the accurately approximate for-
mula of effective filling fraction for the case of isotropic
dielectric substrate. This result will be shown in the other

paper [15].

II. MEeTrIiC FACTOR AND NORMALIZED METRIC
FacTor

Now, consider the anisotropic medium of the following
permittivity tensor filling the two-dimensional space:

et O

€= [ 0 ¢ ]eo (D
where ¢ and ¢* are the relative dielectric constants and ¢,
is the permittivity of vacuum. In such a medium, the
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electric potential ¢ at an arbitrary point (x,y) for the line
charge g, at the source point (x4,y,) is the solution of the
two-dimensional inhomogeneous partial differential equa-
tion:

D, 0% g x)dryy)
* ox? ay? €

@

Applying the coordinate transformation (u=x/Ve},

v=y/ \/T ) and the property of the delta function (8(ax)

=8(x)/|al) to (2), we get
92 CRN ¥

3
u? 81)2 ®)

—— 8(u — up) (v — vy).
€ Ve
Therefore, we can obtain the solution of (2) by applying
the coordinate transformation inversely to the solution of
(3), that is,

- 90 In
2mes\etet

< (4)

1 1
wx- xo)+ e (v =)

where ¢ is an arbitrary constant.

We see from (4) that the line charge emits electric flux
in the radial direction and the electric flux ¢ per unit
angle in the radial direction with the angle 8, from the x
axis, which is one of principal axes, is expressed as

follows:
-"6* *
Wdpet,65,0,)= 2 >

27 ¢*sin®6, +¢* cos 29,

)

Now, we define the metric factor m in the radial direction
with the angle 4, from the x axis in such an anisotropic
medium as follows:

m(e!, 6" 0,)= (6)

——cos 0 +ism 0
¢

Therefore, we can say that this metric factor is the factor
to show the degree of anisotropy of the anisotropic
medium.

Also, we define the normalized metric factor n as the
metric factor normalized by the metric factor in the direc-
tion with the angle 8 from the x axis, that is,

n(e;:’ ey*’0x’B)Em(‘5;5€y*’0x)/m(5:a 5;’:3) (7)

We define the effective path length dp p, between the
point P(x,,y,) and the point P,(x,,y,) as follows:

P =n(€;’€y*’ Hx’le)dPlI’z (8)

where

dP,PZ = \/(xl - x2)2 +(» _.Y2)2

(=actual path length)
)

and @, is the angle between the direction of the line P,P,
and the x axis. Using this effective path length, we can
express the contribution ¢ to the electric potential at the
point P,(x,,y,) due to only the line charge ¢, at the point
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P(x,,y,) as follows:

b=aoln(1/d} ) /(2meg\ezer )-

The B in (7) is defined as the angle between the interface
of different media and the x axis being one of principal
axes of each medium. On the other hand, the B8 for the
case of single medium is arbitrary because there is no
interface and the two-dimensional electric potential ¢ in
such a medium has an arbitrary constant ¢ (see (4)), not
determined unless the value of ¢ at the proper point is
given. Therefore, we can say from (6)—(10) that to define
the normalized metric factor #» as (7)~means to let the
electric potential ¢ at P, due to the line charge ¢, at P, be
zero for the case of single medium, where the direction of
straight line P;P, is parallel to the imaginary interface
w1th the proper B from the x axis and dp, p,=1

The typical final-electric flux line, the final solution
associated with the line charge g, in the region with the
two anisotropic media, is shown in Fig. 1(a). We consider
here the case which the permittivity tensors of two aniso-
tropic media are expressed in the form of (1), respectively.
We can resolve this final-electric flux into the refracted
and reflected flux [1]. For example, the final-electric flux
at the field point D can be obtained by using the electric
flux emitted from the source line charge ¢, at the source
point Qy(xq,o), and the reflected flux which is the electric
flux emitted from the image line charge Kqg (K =(\/€§"xe§‘y
—\/ef‘xei“y )/ (\/e;‘xe;‘y +\/ef‘xe;"y )) at the image point
Q,(— xq¢,y0) in Fig. 1(b). Also, the final-electric flux at the
field point C is identical to the refracted flux which is the
electric flux emitted from the image line charge (1 — K)gq,
at the image point Q,(axgyo)(a= \/ﬁ’z'y /et / \/e;"y /et )
in Fig, 1(b).

In this paper, we do not pay attention to the final-elec-
tric flux in Fig. 1(a), but the electric flux, the refracted
and reflected flux such as shown in Fig. 1(b), into which
the final-electric flux is resolved. This electric flux paid
attention is one emitted from a line charge in the fullspace
filled with a single anisotropic dielectric medium and goes
from a line charge in the radial direction.

Now, we consider the case of anisotropic media in Fig.
1(b). We can obtain that the effective path lengths of the
paths, Q,B, Q,B, and Q,B, have the following relations:

(10)

Ao s =dp s=dg.p (1

where
dos= n(ei“x,ez,,Oz,'rr/Z)onB (12)
dé13=n(ei"x,e;';,b?l,w/Z)dQlB (13)
dj.p= n(eg‘x,eg‘y,02,w/2)dQ23, (14)

Therefore, the effective path lengths dj 5., 5 and dgcvian
are expressed as follows:

déoA viaB ™ n(ffx’ 62";, 02,'”/2)on5 + ”(ffx’ Ezv’ 85,7 /2)dy,
= n(e;‘x,ei"y,ﬂz,w/Z)dQ;!A (15)
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!

Fig. 1. Typical electric flux lines in the region with two anisotropic media (the actual path length
region G) and in the region with two isotropic media (the effective path length region G”). (a) Typical
final-electric flux line in G. (b) Typical electric flux lines in G. (c) Typical electric flux lines in G”.

= _ =\/t I3 \/ e* S o % e [ * _\/
Y=y oxg/(axg— x,), & e2y/€2x / fly/f’fx , €y =ete, ey=€Je, €F = efel, = fi'xffy s

K=(—el)/(+el), xo=% V &3,/ €}, s X2= — X0, Yo=Y » Y6 = Y-

déocms = ”(fikx, fiky’ 02’77/2)dQDB + ”(ffxs 5’1’}, 0, W/z)dBc
=n(ei“x,e’1"y,01,vr/2)dQlc. (16)

We easily find from Fig. 1(b) that the path Q,B4 is one
with the shortest path length, but the path Q,BC is not so.
However, we can find from (15) and (16) that the paths
QoBA and QyBC are the paths with the shortest effective
path lengths.

If the two media are isotropic in Fig. 1(b), ¢ =¢5=¢€*(i
=1,2), the image point Q, becomes the position of the
source point Q,. Then, we can easily find that the paths
QoBC and QyBA are the paths with shortest path length
among the paths of the electric flux travelling via the
point on' the interface from Q, to C and from Q, to 4,
respectively. Also, we can find by letting ¢ =¢}=¢* in
(15) and (16) and using n(e*,¢*,8,,8)=1 for the isotropic
medium that the paths, QyB4 and GyBC, are the paths
with the shortest effective path lengths.

From these results, we can say that the electric flux
emitted from the source point travels as such that its
effective path length becomes shortest. Therefore, we pro-
pose the minimum principle of effective path length for
electric flux of an electrostatic problem with anisotropic
media which will be able to be solved by using the
image-coefficient method [1] as follows:

f n(et,e,0,,8)ds =minimum. (17)

path

This principle states that the electric flux emitted from the
source line charge chooses a trajectory that minimizes the
effective path length. We must take note that this princi-
ple is valid for the refracted and reflected flux into which
the final-electric flux associated with a single line charge
at an arbitrary point in the region with anisotropic media
is resolved, but not valid for the final-electric flux. Also,
this principle can be applied to the case with an arbitrary
number of the media (even whose principal axes are
different) if those interfaces are parallel, and to the finite
region bounded by Dirichlet, Neumann, or those mixed

boundaries whose boundaries are piecewise smooth. We
can obtain a trajectory of an electric flux emitted from the
source point in Fig. 1(b) by solving the Euler equation for
the principle (17). Therefore, we can obtain the positions
of the image points Q, and Q, by using (11). Then, we can
find that these image points are fixed if the source point is
given.

In order to show the validity of this minimum principle,
let us solve the problem which has not been solved in the
literature, with the interface at y=b,x, with two aniso-
tropic media whose principal axes are different from each
other, and with the line charge ¢, at the source point
P,(x,y,) in the medium €;, as shown in Fig. 2. It is
difficult to solve this problem by using only the image-
coefficient method in [1]. We express below the permittiv-
ity tensor €, of one anisotropic medium in the x-y coordi-

nates:
%*
€, = €ix 0 €
1™ ® |0
0 €

and the permittivity tensor €, of other anisotropic medium
in the §-n coordinates:

€, = % 0 €
2 0 5;‘1, 0

The £ coordinates is obtained by rotating the x-y coor-
dinates with the angle y as shown in Fig. 2, that is,
cosy

£ sin |[y x

m —siny  cos [yy]'
This problem is the fundamental one to derive the Green’s
function for the microstrip line with the anisotropic sub-
strate whose principal axes are not parallel and perpendic-
ular to the ground conductor. Solving the Euler equation
for the principle (17), we can know the trajectory of an
electric flux emitted from the source line charge g,. Let
the points Py(x,,y,) and Py(x;,y;) be the image point of
the refracted flux P, Ps and that of the reflected flux P, P,,
for the electric flux P, P, emitted from the source line
charge g, at P;(x,,y;), respectively. The points P, and P,

(18)

(19)

(20)
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e SR AN e /yEbx -Let the magnitudes of the image charges at P, and P,,
; B (x y) . _ R:/ n=b3 here, be denoted by g, and g,, respectively. We can
S SRE) 8\ b (%:.y:) express the electric potential ¢ at the arbitrary point (x,y)
S R B Ko AR VAN 10| from (10) as follows:
R RN ! P
- RN g ' * 1
N . \ o= ———
N B P “ i1
-\\.; ol ! 27eg\ef €l
N O \
- [ ' \‘ “ //1
.-:, Ce \::\ ' ez, /’/ Y ) a12+ b%
N [ | qln "
oo . - 2 2
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SR A AT I
b iR Vei+ b}
Ak ,“\eu N i +4q, In = b
7 2
X Vi+83 \ad(x— x5+ (y—yy)
\\ “
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X
\ qz 3 92
v
\ ’ 2meg\esces,
Fig. 2. Refraction and reflection of the electric flux emitted from the
source line charge ¢, in the region with two anisotropic media (the
actual path length region G).

can be determined, respectively, from the following condi-

tions for the effective path lengths:

o Vag + b%
\/1 + b% \/a%(g - 52)2 + ("7 - 772)2

(¢,n) €€ region  (32)
where
dpp=dyp=d (1) b,=(b,cosy—siny)/(b,siny+cosy). (33)
where Let us determine ¢, and ¢, as follows:
/ =(1-K 34
B, = (o€l 01 B, 22) a=(=K)a, 9
dpap,. = ”1(5?}’ €t 03x’B)dP3P,- (23) k& % (35)
dpp = ”2(53‘5"3‘17’ 0,8~ 'y)dpzpi 249) K Ver€r, — \/eg‘ge;‘,’ (36)
B=tan"'b,. (25) Vefuely +Veled,
So that where the fraction K is called the image coefficient. The
( 2_p2 validity of this determination is obtained by investigating
Y1, x 1 Y1 . . . .
3= +— B2 X1 g the requirements of continuity of the normal final-electric
) 1oaptd ! (26) flux density component and the tangential final-electric
2b,a} » field component at the interface y = b,x. Therefore, at the
Y3=yit 2+ 17 b—x) interface, the fraction Kiy(q;,e},,€},,0;,) of the flux
L e . ¥(q), €1y, €1, 0,,) emitted from the source point P, reflects
[ x| _ [COSY —smy ] & (27) and goes as emitted from the image point P, and the
| V2 siny cosY [| M2 remainder (1- K)Y(q;,€};,€3,,0,,) refracts and goes as
£ = a){ @ ay(b;siny +cosy) +b,(b, cosy —siny) } emitted from the image point P,.
=
ay(af+b}) IIL
-(x1 - )l;—i) +(b,siny+cosy)y,;/b,

a,{a;(b, cosy —siny) — a,b,(b;siny +cosy)}

(28)

TRANSFORMATION FROM ANISOTROPIC
PROBLEM TO ISOTROPIC PROBLEM

Vi

b

-(xl

a%+ bf

)"‘ (bycosy—siny)y,/b;
1

0= \/6?,/5?‘, s Oy = VE’;,./G‘;} .

We see from (10) that the equipotential line is the curve
connecting the points whose effective path length from the
source point are equal to each other. This means that the
boundary value problem with anisotropic medium can be

transformed into that with isotropic medium. Let us call
the former region with the actual path-length region G

and the latter region with the effective path-length region
G'. '

(29)

(30)

For example, we can transform the anisotropic problem
shown in Figc. 1(h) into the isotronic nrohlem chown in
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Fig. 1(c) as follows:
n(ek,€2,0,7/2) 0 x
h 0 n(ek, et m/2,7/2) || y
(37
where i=1 for the field point (x,y)E¢€, region and the
image point @,(x,,y,), and i =2 for the field point (x,y) €
€, Tegion, the source point Qy(xq,¥,), and the image point
Q,(x,5,y,), respectively.
Also, we can transform the anisotropic problem shown

in Fig. 2 into the isotropic problem shown in Fig. 3 as
follows:

’

X

s

Y

[;1}=N(x,y,ﬁ)[jf] -

- * %
€1 = V€&ix€y

for the field point (x,y)E¢&; region, the source point
P(x,,y), and the image point P;(x,,y5), and

[ |- @R DN DRO)[ 5]

*—-” * %k
62" €2$€2"l

for the field point (x,y) €€, region and the image point
Py(x,,y,), where

(39)

N(xpn0)=| 500 o 40

(x.7,0)= 0 n(er etm/2,0) (40)
_ cosf sind

R(0)-—[ —~sinf  cosd (41)

_ (apsiny +b,cosy)a; — (a,cosy — b,siny)b,

tand = ; : .
(aycosy—b,siny)a, + (aysiny + bycosy) b,

(42)

In (38), N(x,y,B) denotes the transformation matrix of
the x-y coordinates into the x’—y’ coordinates in order to
transform the actual path-length region into the effective
path-length region. In (39), R(y) denotes the transforma-
tion matrix of the x—y coordinates into the é&-n coordi-
nates. Next, N(§,n,8—7y) denotes the transformation
matrix of the é—n coordinates into the £ —n’ coordinates in
order to transform the actual path-length region into the
effective path-length region. Also, R(8)R(— v) denotes the
transformation matrix of the &%’ coordinates into the
x'—y’ coordinates in order to match the interface of two
media in the x'—y’ axes considered as the coordinate axes
in the effective path-length region.

Next, we consider the actual path-length region G,
shown in Fig. 4(a), with anisotropic media whose inter-
faces are parallel to the x axis, whose permittivity tensors
are

_ 6:(1) 0
€=

€ i=1,23,---,n 43
. ey} 0 43)

173

TRy

/Py
q, Rbcy)

€

Fig. 3. Refraction and reflection of the electric flux emitted from the
source line charge g, in the effective path-length region G’ trans-
formed from the actual path-length region G in Fig. 2. €| =¢l¢,

e=cle, €= Vel el ,ed=Vekhet .
2= €3 €0, €] 1x€ly > €2 2:€2y

and whose principal axes are such that

Q]
x(i) i=1,2,3,---,n.
y

X T w
—R(v,-){y } —5 %<5,
(44)
We can transform the region G shown in Fig. 4(a) into the
effective path-length region G’ shown in Fig. 4(b) as

follows, by applying the transformation modified (38) and
(39):

[;Z ] = T(l)[;]’ (x,y) €€, region (45)
[ ;: ] = T(2)[ jf ]’ (x,y) €€, region (46)

x’ X 0

. 0
i—1
=T T S, (2 TW), |
y () y (i) kzzh" 2 () B,

(x,y) E¢, region, i=3,4,5,---,n (47)

€ =¢€'e, " =\eF gD , i=1,2,3,---,n (48)
where
T(i)= RE)R(=1)IN(xOyO, —v)R(v)  (49)
o ek .
N(x®,y®, 9) = nek >,c(y) ®,0,8) ,n(e:(i)’ ey*((l”wﬂ,o)
(50)

tan §; = (o;siny, + b, cosv,) /(a;cosy, — b;siny;) (51)
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Fig. 4. Transformation from the actual path-length region G into the
effective path-length region G’. (a) Actual path-length region G. (b)
Effective path-length region G’.

b;=tan(—v,) (52)
G=\eg o/ o . (53)

Calculating the matrix 7Yi) in (49) by using (50)—(53), we

can express T(i) with only a; and vy, i=1,2,3,---,n, as
follows:
T,,(i T,.(i
Tzl(’) Tzz(’)
where
. . aiz—l siny; cosy;
T”(z)=1, Ti(i)= ( )

(af —1)cos?y, +1
Ty,())=0, Tn(i)=a;/{(a?—1)cos’y,+1}.

In the case of y;=0(i=1,2,3,- - -, n), this transformation
is identical to that shown by Yamashita et a/. [6] and
Szentkuti [18]. We know that both the latter transforma-
tions are useful for an actual structure as one of the
anisotropic substrates’ principal axes is parallel to the
direction of interface between those substrates in many
cases. Szentkuti [19] derived the transformation for the
case of n=2, a,=1, vy, =0. His results are identical to our
results (see References).

Now we consider the matter obtained from the trans-
formations shown already. We can say that the normal-
ized metric factor is the transforming factor of the path
length of the electric flux travelling between two points
for being able to treat the anisotropic medium as the
isotropic medium. The points on the interface of two
media in G, by the transformation (45)—(48), do not slip
out of place from each other in G’ as the normalized
metric factors in two media are unit in the direction
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parallel to the interface. This means that it is reasonable
to define the normalized metric factor as (7). Also, we can
find that the effective path lengths and the electric poten-
tials of two corresponding points between G (Fig. 1(b))
and G’ (Fig. 1(c)) or G (Fig. 2) and G’ (Fig. 3) are
mathematically equal to each other, respectively. The elec-
tric potential for the case with many line charges can be
calculated by the superposition principle. Therefore, we
easily see that the line capacitance between the conduc-
tors for the region G with anisotropic dielectric media in
Fig. 5(a) is equal to that for the region G’ in Fig. 5(b) with
isotropic dielectric media, which is obtained by using
(45)—(48) and (54). Because the total charges on the con-
ductors and the electric potentials of the conductors of
two regions are equal to each other for this transforma-
tion, respectively. Let the line element of the direction
with the angle 8, from the x® axis in the § region in G
be ds;, and the total line charge and the charge distribu-
tion on it be ¢; and o,, respectively. Let those in G’ be ds;,
g/, and o/, respectively. We obtain the following relation:

(55)

from o/ds/(= q) = o,ds(=¢q;) and ds;= n(ef, %, 0,0,
— v,)ds;. Therefore, we see that the charge distributions on
the conductor surfaces parallel to the interfaces in G and
G’ are identical to each other. We can express ¢(i), E(7),
and D(7) in the ¢ region in G and E’(i) and D'(i) in the ¢
region in G’ by using ¢'({) in the € region in G’ as
follows:

o/=0,/ ”(5: @, €, By, — Yi)

(i) =¢'(?) (56)

E(i)=iE,(i)+ j{Tp(DEL()+Tp(MEN()}  (57)

D(i)={R(~v,) & R(v) }-E(i) (58)
E'({)=iEL(i) +JE,(i) = i( - a‘g;c,’) ) + j( - %y(—’))

(59)

D)= ¢E() (60)

where R(#) is the tensor expression of R(#).

Next, we consider the unsymmetric strip transmission
line in G (Fig. 6(a)). The permittivity tensor of its aniso-
tropic dielectric substrate of thickness 24 is such that

_ e 0
€=l E:eo

in the £-n coordinates obtained by rotating the x-y
coordinates with the angle . Its strip width is w, its strip
thickness is ¢, and the slip of the midpoints of two strips is
such that

d=2h(a*—1)sinycosy/{(a®>—1)cos’y+1}

(61)

(62)

where a=\/<,’:‘ /et . Using (45)—(48) and (54), we can
transform the unsymmetric strip transmission line in G
into the symmetric strip transmission line, with

€ =¢\efer

(63)
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Fig. 5. Example of the transformation from G to G’. (a) Actual path-
length region G. (b) Effective path-length region G'. a;=ay=1, ay=2,
=3, "1=1,=7/6, 3=7/4 14=0, =V eo/gu, §=¢'¢,
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Fig. 6. Transformation from the unsymmetric strip transmission line in
G into the symmeiric strip transmission line in G’. (a) Unsymmetric
strip transmission line in G. (b) Symmetric strip transmission line in
G'.n=3, a%=a3=1, ay=2, hy=hy=00, hy=2h, y,=73;=0, y,=y=
7/6, x@-y@ coordinates —¢-n coordinates in Fig. 4(a).

w=w (64)
W=ah/{(a*—1)cos’y+1} (65)
r=t (66)

in G’ (Fig. 6(b)). From Fig. 6, we find that the dot-dash
line AC as well as the dot-dash line 4’C’ are both zero
potential lines. Therefore, the microstrip lines with the
same anisotropic dielectric substrate higher and lower
than the ground conductor are the image lines to the
ground conductor, which let the dot—dash line AC be.
Also, the line capacitance C/¢, of each microstrip line in
G is equal to that of the corresponding microstrip line in
G'. The parameters of a microstrip line with anisotropic
substrate can be calculated by using C/ ¢, of the case with
substrate and C,/¢, of the case without substrate. The
exact value of C,/¢, can be obtained by conformal map-
ping [13], [14]. The C/¢, for the microstrip line with
anisotropic substrate can be obtained easily from the
approximate formula of the effective filling fraction ¢, [1],
[10], [11] for the case of isotropic substrate. Therefore, it is
worthy to show the approximate formula of ¢, with a high
accuracy. This will be shown in the other paper [15].

We must mention that the transformation (45)—(48) and
(54) is valid for the finite region composed of the multi-
layered anisotropic media and bounded by the conductor,
Neumann, or those mixed boundaries whose boundaries
are piecewise smooth, though its example is not shown
particularly in this paper.
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1V. CONCLUSION

We have defined the metric factor and the normalized
metric factor for an anisotropic medium. Using the nor-
malized metric factor, we have shown the minimum prin-
ciple of effective path length which shows us a trajectory
for an electric flux to travel. In order to show the validity
of this principle, we have solved the electrostatic problem
with two anisotropic media. Also, it has been shown that
the anisotropic problem can be transformed into the iso-
tropic problem by using the normalized metric factor.
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